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Abstract

Flooding is one of the most costly natural disasters faced by US households, yet policymak-
ers are puzzled by the low take-up rates for flood insurance. In this paper, I argue that
households’ insurance purchases are affected by the low salience of flood risk. Leveraging
novel transaction-level data, I use two empirical strategies to support my hypothesis. First, I
exploit a staggered national reform that publicizes already freely-available flood risk informa-
tion across US counties. Insurance purchases, in response to the reform, increase by 30.6%,
with the strongest effect in counties where the ex-ante salience of flood risk is low. Second, I
exploit variation in salience induced by flood events shared through social media. Households
purchase significantly more flood insurance after their geographically distant peers experi-
ence floods. My results suggest that behavioral frictions have a major impact on households’
insurance decisions.
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1 Introduction

Flooding is one of the most costly natural disasters in the US and is drawing increasing

attention in public policy debates. In the 2010s, flood-related disasters have caused

losses of $658 billion.1 As flood risk materializes with low frequency but has catastrophic

consequences for households’ asset values and welfare, insurance is crucial for households

to hedge this tail risk. However, the take-up rate of even subsidized flood insurance is low

in the US.2 Policymakers are looking to encourage insurance purchases as the expected

cost of uninsurance is high.3

Yet why would flood insurance be underutilized by households? I test the hypothesis

that households do not buy flood insurance because the risk is not fully salient to them.

I define salience as the phenomenon when one’s attention is disproportionally directed to

one portion of the environment and the information it contains (Taylor and Thompson,

1982). Models of salience and heuristics (Tversky and Kahneman, 1973, 1974; Bordalo

et al., 2012, 2013; Kőszegi and Szeidl, 2013) suggest that the low salience of flood risk (in

normal times) might lead to inattention, underestimation, and low insurance take-up.

Identifying a causal effect of salience on insurance demand requires overcoming several

challenges. First, the salience of flood risk is difficult to measure, as we do not observe

households’ attention. Second, the determinants of insurance demand—such as informa-

tion about flood risk, actual risk, and attention—often move simultaneously, making it

difficult to isolate the key driver. For example, in the aftermath of a flood, salience likely

increases, but so may the actual flood risk, due to damage to infrastructure or to changes

in geological conditions. Third, as the equilibrium price and quantity of insurance trans-

actions are jointly determined by supply and demand, it is difficult to distinguish shifts

in the supply curve from shifts in demand.

I overcome these challenges by using data from the National Flood Insurance Program

(NFIP) and two quasi-experiments. The NFIP was created by the US Congress in 1968

to provide affordable household flood insurance. I obtain over 50 million transaction-level
1The estimate is obtained from the National Oceanic and Atmospheric Administration.
2According to the Insurance Information Institute 2016 Survey, only 12% of US households had flood

insurance. Consistently, only 17% of the flooded homes by Hurricane Harvey in 2017 were insured.
Similar concerns have been documented for other insurance products and in other countries (Cole et al.,
2013; Karlan et al., 2014; Banerjee et al., 2019; Finkelstein et al., 2019).

3According to the National Flood Insurance Program, the cumulative difference between premiums
and claims is −$5.85 billion over the past 20 years, implying that, in aggregate, policyholders would have
accumulated an additional loss of $5.85 billion without flood insurance.
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observations from January 2009 to August 2019, including information on policy start

and end dates, premiums, coverage, house characteristics, and locations.

The NFIP is ideal for measuring shifts in insurance demand for two reasons. First,

the supply is perfectly elastic. The insurance rates are fixed conditionally on given risk

profiles, which primarily depend on government-designated risk zones. They do not

otherwise vary by state, locality, or market conditions. Second, unlike most other property

and casualty risks, flood risk has been shunned by private insurers (Horn and Webel,

2019), leaving few outside options for households.4 Thus, standard models predict that

the marginal household will go from not buying to buying flood insurance from the NFIP

when its hedging demand becomes stronger. Aggregating at the county-month level, the

change in the number of policies in-force thus captures shifts in the demand curve.

To identify the effect of salience, my first quasi-experiment exploits the NFIP’s stag-

gered transformation of existing paper-based flood risk maps into digital ones. Figure 1

presents an example. This reform increased flood risk salience via local marketing cam-

paigns (such as open houses and newspaper advertisements) to publicize the digital maps

(see Section 2.2 for details). In addition, the new maps are more eye-catching, highlight-

ing flood risk with visually appealing colors and satellite street views. Enhanced visual

salience has been shown to affect human behavior in contexts such as stock investments

(Towal et al., 2013; Li and Camerer, 2019; Bose et al., 2020).

Under the null hypothesis of perfect attention to flood risk, this reform should not

significantly affect households’ insurance purchases, for two reasons. First, before digi-

talization, the risk information was already freely obtainable, as the scanned maps were

always available online. Second, the hard information about flood risk is identical in the

two maps in Figure 1.

Using a difference-in-differences strategy that exploits the county-by-county intro-

duction of digital flood risk maps, I show that the number of flood insurance policies

in-force increases by 30.6% after the new maps are published. I find no evidence of a

differential pre-trend in the treated counties. Following digitalization, the increase in in-

surance demand materializes quickly over several months and appears to be permanent,

as I find that the incremental policies are renewed in subsequent years. This result is
4The private market for flood insurance barely exists because the government heavily subsidizes the

NFIP (see footnote 8). Cutting subsidies and privatization are the subject of contemporary policy
debates, but irrelevant to this paper’s research question.
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consistent with the hypothesis that households are inattentive to flood risk due to its

low salience. My quasi-experiment cannot distinguish whether the risk information was

known by households but ignored or whether it was simply unknown. Both are examples

of limited attention to flood risk, as the information cost in my setting is minimal.5

I provide a set of additional empirical findings consistent with the salience hypothesis.

First, I show that average house prices (measured by Zillow’s home value index) in the

treated counties drop by 2% after digitalization, suggesting that when flood risk becomes

more salient, it is more heavily priced into real estate values. This finding is consistent

with households underweighting product attributes (such as a property’s exposure to

flooding) until they are made salient (Bordalo et al., 2013).

Second, I show that the digitalization effect is weaker where the salience of flood

risk is already high. Specifically, flood occurrences in the past predict a smaller post-

digitalization increase in flood insurance purchases.6 This correlation is monotonic—the

longer the county has not had a flood, the larger the digitalization effect. In a similar

vein, I also show that, given any value of n from 1 to 6, counties with no flood in the

past n years before digitalization experience a larger treatment effect than do counties

that had at least one flood in that period.

Third, I consider several proxies for households’ pre-digitalization attention to flood

risk. I find that the digitalization effect is weaker in counties with greater incomes, higher

education, more believers in global warming, or higher flood risk. The strongest effect is

observed in moderate-risk areas, likely because flood risk is already salient in high-risk

areas and because flood insurance is not needed in low-risk areas.

I consider several alternative explanations for my findings. First, the relationship

between digitalization and flood insurance demand might not be causal if both are driven

by a third factor. One alternative explanation is that the digitalized maps are introduced

across geographies that experience increasing underlying flood risk, which simultaneously

drives up insurance purchases. In other words, the digitalization process might endoge-

nously capture an existing trend in underlying flood risk and insurance demand. However,
5Even before digitalization, googling “flood insurance” or “flood risk” would instantly bring up infor-

mation about the NFIP and its flood hazard maps (scanned copies). Thus, ignorance of the importance
of hedging flood risk is effectively equivalent to ignorance of flood risk information.

6There is a large literature showing that past experiences affect subsequent decision making. See,
for example, Malmendier et al. (2011); Malmendier and Nagel (2011); Dittmar and Duchin (2016);
Malmendier and Nagel (2016); Bernile et al. (2017); Schoar and Zuo (2017); Kuchler and Zafar (2019).
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the parallel pre-trend, shown in Figure 5, refutes this explanation.

A related non-causal explanation is that the publication of digital maps follows a lo-

cal flooding event, which simultaneously induces insurance purchases (Gallagher, 2014).

This explanation differs from the previous one if flooding is unpredictable, in which case

the pre-trend test does not help. Therefore, I provide additional evidence to cast doubt

on this alternative explanation. First, past floods cannot predict digitalization timing.

Second, there is no change in flood frequency around digitalization, while the alterna-

tive hypothesis predicts bunching before it. Third, anecdotally, local officials explicitly

declared that the publication of new digital maps is unrelated to recent floods.7

Next, I investigate whether there is a purely rational explanation for why the reform

leads to increasing demand for flood insurance. While my data does not allow me to fully

rule out all rational hypotheses discussed below, I present a series of evidence suggesting

that my findings are unlikely to be driven by purely rational mechanisms.

The first purely rational hypothesis I consider is that having digital maps on the

Internet reduces households’ transaction cost of finding flood risk information. Some

previously uninformed and uninsured households may see the maps online and start

buying insurance. However, this is unlikely, as flood risk information was already freely

available to households even before digitalization. In particular, the scanned maps (as in

Figure 1) were always online, and people could also easily acquire information from local

NFIP agents or toll-free hotlines. I provide further evidence to support this argument

in Section 4.6.2. For example, I find that the reform also affects the intensive margin

of existing policyholders, who are already informed by their current policies (the most

crucial piece of information being their risk zones). Yet, they increase their insurance

coverage, which is unlikely due to a reduction in information cost.

The second purely rational hypothesis I consider is that the informational content of

the paper and digital maps is fundamentally different. Anecdotally, some areas of some

maps might have been updated, while being digitalized, to reflect higher or lower flood

risk. However, I present evidence in Section 4.6.3 suggesting that the scope of updating

is likely small, consistent with the examples in Figure 1 and the Web Appendix. For

example, I show that digitalization does not cause existing policyholders to cancel or to
7For example, on the official website of the City of Alexandria, Virginia, it says, “This effort [devel-

oping new digital maps] is unrelated to recent flooding the city has experienced from flash flooding in
July 2019 and, more recently, on July 23 [2020].” See Section 4.6.1 for details.
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stop renewing their flood insurance policies. If the map modification had been extensive,

we should observe cancellations induced by risk downgrades.

To further support the salience hypothesis and avoid the information-based alternative

explanations, my second strategy exploits variation in social connectedness on Facebook

and leverages non-local flooding events. This strategy complements the first one by

making it unequivocal that the local flood risk does not change and that there is no

new information about the local risk. Specifically, for a given flooding event (e.g., in

Boston), I examine flood insurance purchases in geographically distant states. Within

the same far-away state (e.g., California), I compare changes in flood insurance purchases

in counties that are more versus less socially connected to Boston, before and after the

flood in Boston. The idea is that when an individual sees Facebook friends sharing flood

experiences, the possibility of going through a flood becomes more salient.

Pooling all major floods (that triggered federal assistance) between 2010 and 2019 in

an event study design, I find that the number of flood insurance policies in-force increases

by 1%−5% in counties that are more socially connected to the flooded area, compared to

the less connected counterfactuals in the same distant state. I find no pre-trend, and I

document two additional findings consistent with the salience hypothesis. First, the effect

is monotonic in the strength of social connectedness. Second, the most damaging floods

cause the most pronounced effect across social networks. My strategy is similar to that

of Bailey et al. (2018a), who show that friends’ house-price experiences affect one’s own

housing investment decisions. As regional housing markets are possibly correlated while

geographically distant floods are much less likely to be, my setting makes it arguably

easier to rule out rational learning as an alternative explanation.

This paper does not claim that the increase in flood insurance purchases—or that the

NFIP in general—is socially optimal. It is likely welfare-improving for households, as the

NFIP offers heavily subsidized insurance rates, and it is the government’s declared goal

to encourage more people to acquire flood insurance.8 A back-of-the-envelope calculation

suggests that the expected net benefit of buying flood insurance is $1,240 per year per

flood-prone household.9 However, a complete welfare analysis needs to take the subsidies
8The NFIP suggests that eliminating the subsidy would cause aggregate premiums to increase by 50-

75% (Hayes and Neal, 2011). Consistently, the NFIP’s premiums cannot fully cover claims (see footnote
3), and its operating expenses further worsen its financial condition—it owed $20.5 billion to the Treasury
as of December 2019 (excluding a $16 billion debt canceled by Congress in 2017).

9The estimation is based on the following assumptions: an NFIP-defined 1% inundation probability
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and government expenditures into account, which is beyond the scope of this paper.10

This paper contributes to a rapidly growing literature on behavioral household finance

and is among the first to study households’ insurance decisions against rare disaster risks.

There is considerable evidence that households make suboptimal decisions because of lim-

ited attention. For recent empirical findings from various contexts, see Barber and Odean

(2008); Chetty et al. (2009); Choi et al. (2009); Finkelstein (2009); Brown et al. (2010);

Malmendier and Lee (2011); Lacetera et al. (2012); Hastings and Shapiro (2013); Stango

and Zinman (2014); Busse et al. (2015); Andersen et al. (2020). Acquiring insurance

against low-probability disasters is a critical household decision, but it is understudied by

the literature. My results suggest that households are especially vulnerable to behavioral

biases when assessing low-salience tail risks. This finding is important to policymakers,

as neglecting rare disasters can be costly for households.

A closely related paper is Gallagher (2014), which shows that flood insurance pur-

chases increase after a local flooding event. My work differs in several dimensions. First,

Gallagher (2014) documents a long-term but declining effect of personal experiences,

while I provide evidence of a persistent effect in a different setting.11 Second, his NFIP

data is yearly, aggregated, and covers an earlier period (1980-2007). Third, his results

are open to different interpretations: actual risk may change in the flooded area (e.g.,

due to foundation erosion), households may learn about flood risk and exposures from

local and nearby floods, and households may overweight recent experiences.

This paper also adds to the nascent literature on the effects of climate risk on house-

hold behaviors and economic outcomes. A number of studies examine whether climate

risk, in particular sea-level rise, is capitalized into real estate values (Giglio et al., 2015;

Keenan et al., 2018; Bernstein et al., 2019; Baldauf et al., 2020; Murfin and Spiegel, 2020)

and mortgages (Issler et al., 2019; Ouazad and Kahn, 2019). Other papers study how

personal experiences of climate change or natural disasters affect beliefs about climate

risk (Li et al., 2011; Zaval et al., 2014; Dessaint and Matray, 2017; Chang et al., 2018;

Anderson and Robinson, 2019; Choi et al., 2020). These studies typically demonstrate

a short-term impact of a shock (e.g., a day of unusual weather). My focus on public

p.a., an average premium of $993, an average coverage of $227,112, and an average deductible of $3,831.
10Wagner (2019) provides a framework for studying the welfare effects of the NFIP. Her results suggest

that enforcing a flood insurance mandate will increase social welfare.
11In Gallagher (2014), the effect is rather stable around 8% in event years 1 to 8, but it substantially

drops in years 9 and 10. In contrast, Appendix Figure A.4 shows a persistent effect in my setting.

6



awareness and visual salience is novel, and the substantial effects of campaigns and social

networks that I document have unique implications for effective climate policy.

The remainder of the paper is organized as follows. Section 2 describes the institu-

tional background and details the data. Section 3 describes the two empirical strategies.

Section 4 presents findings from the staggered introduction of digital flood risk maps.

Section 5 presents results using social media connectedness and geographically distant

floods. Section 6 concludes.

2 Institutional Background and Data

2.1 The National Flood Insurance Program

The US Congress founded the National Flood Insurance Program (NFIP) in 1968, and

as of August 2019, it covers all 50 states and 3,053 (out of 3,143) counties. The program

creates flood hazard maps for participating communities (subdivisions of counties, such

as townships, villages, and cities), and only residents in participating communities are

eligible to buy NFIP policies. The insurance premiums primarily depend on risk zones

(set centrally by the government) and also vary by the choices of coverage and house

characteristics. They do not otherwise vary by state, locality, or market conditions.

The NFIP data is maintained by the Federal Emergency Management Agency (FEMA).

I obtain more than 50 million transaction-level observations between January 2009 and

August 2019, including policy effective dates, policy termination dates, premiums, cov-

erage, deductibles, first policy dates, cancellation dates, and house characteristics. The

policies are annually renewed, and renewals appear as separate transactions in the dataset.

Broad location information (such as census tract, county FIPS code, and community

code) is available, but specific properties cannot be identified due to privacy protection

(geographic coordinates are truncated to one decimal point).

Based on the policy effective dates and termination dates, I can calculate the num-

ber of policies in-force (a stock measure) and the number of policies purchased (a flow

measure) in a given month for a given county. By definition, the change in the number

of policies in-force between two consecutive months t−1 and t is equal to the number of

policies purchased minus the number of policies expired in t. Additionally, knowing the

policyholder’s first policy date allows me to determine whether the anonymized transac-

7



tion is a first-time purchase or a renewal. Since I do not observe data for 2008, I can not

perfectly impute the number of policies in-force in 2009. Therefore, my analysis starts

from January 2010. The data granularity and the 10-year panel allow me to zoom in on

households’ flood insurance demand in the very short-run as well as to keep track of its

long-term dynamics.

Table 1 presents descriptive statistics of the NFIP. Panel A shows that in an average

month, there are 5.29 million policies in-force nationally. From these policyholders, the

program receives $3.32 billion in premium for $1.26 trillion in coverage.12 The nation-

wide average annual premium per policy is $628, and the average coverage per policy is

$238 thousand. Panel B shows that the cross-sectional heterogeneity is stark. While the

average county purchases 1,766 policies, the median is only 120. Appendix Figure A.1

shows a geographical heat map of the number of policies in-force. As one would expect,

coastal counties have the highest densities. The variation in the average insurance pre-

mium, reported in Panel B, is due to differences in flood risk across counties, rather than

to price differentiation.

2.2 Digitalizing Flood Hazard Maps

The Map Modernization (Map Mod) program was launched in 2003 by FEMA to trans-

form the flood hazard maps from paper to digital. These improvements have continued

under FEMA’s successor Risk Mapping, Assessment, and Planning (Risk MAP) program

launched in 2009. Before digitalization, people could obtain paper maps from local NFIP

agents or offices, find scanned copies online, or call toll-free NFIP hotlines to acquire

relevant information (e.g., risk zone designations).

Figure 1 shows an example—the Town of Colfax (community code: 220077), Grant

Parish (county code: 22043), Louisiana—to illustrate what users can see on the flood

hazard maps (available at msc.fema.gov/portal). Figure 1.a shows a scanned copy of

the legacy paper map. It was published on November 16, 1995 and was in use until

the digital map (Figure 1.b) became available on June 16, 2016. These two maps convey

identical information about the flood risk in the Town of Colfax (although the jurisdiction

boundary is slightly different). The blue areas in Figure 1.b are the Special Flood Hazard
12Compared to other property and casualty insurance in terms of aggregate premiums (2017 data):

earthquake ($2.9B), aircraft ($1.5B), mortgage guaranty ($5.0B), burglary ($0.3B), and fire ($11.6B).
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Areas (SFHA) which are expected to have a 1% (or higher) flooding probability per year

(referred to as 100-year floodplains), and the brown areas are of median risk, with a 0.2%

(to 0.99%) flooding probability per year (referred to as 500-year floodplains).

2.2.1 Local Campaigns

Around the publication of the new digital maps in a county, FEMA instructs the local

government to run a campaign (known as the “Flood Risk Open House”) to increase

public attention. FEMA provides customized marketing packages and templates (known

as the “Toolkit”) to advertise the Open House by placing advertisements in local newspa-

pers and on radio, distributing flyers, and posting announcements on community websites

and social media. The full toolkit can be found on FEMA’s website.13 Figure 2 presents

examples of actual advertisements and announcements.

2.2.2 Visual Salience

Visually, the new digital maps are more appealing and might increase the salience of flood

risk, even if the hard information about flood risk does not change on the maps. Figure

1.b appears visually more salient than Figure 1.a because flood risk is more intuitively

highlighted by the water-like color and because the visibility of actual houses and streets

in satellite views might create resonance and draw attention.

To assess which format is more eye-catching in a more systematic manner, I leverage

a machine-learning-based methodology called the Saliency Attentive Model (SAM), de-

veloped by Cornia et al. (2018). The model predicts human eye fixations on an image

within the first few seconds of gaze. I put the digital and paper maps side by side as one

input image. Appendix Figure A.2 presents the output returned by SAM; the overlay

heat map represents the predicted human eye fixations. The results show that the colored

digital map draws more attention than the black-and-white paper map.

2.3 Staggered Introduction of Digital Maps

Revisiting the digital map in Figure 1.b, the dates shown on each small area indicate the

publication dates of the flood hazard maps. For instance, the Town of Colfax published

its digital map on June 16, 2016, whereas the neighboring county to the west did so on
13See http://townofvanburen.com/wp-content/uploads/2016/08/Onondaga-Open-House-Community-

Packet-FINAL.pdf, for an example of a tailored toolkit that FEMA sent to Onondaga County, NY.
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July 6, 2015. For the dot-shaded area to the south-west (part of a different county),

its digital map is not yet available, and the latest version is still the paper map from

September 5, 1984.

I obtain all communities’ map publication dates from FEMA’s Community Status

Information (CSI) database. The data suggests that the digitalization programs are run

at the county level, and communities within the same county typically publish their new

maps simultaneously, consistent with the open house examples discussed in the previous

section. Since the other essential data for my analysis, such as flood occurrences and

housing prices, is not as granular as communities, I examine the staggered introduction

of digital maps at the county level. When there are disparities among communities, I

define the treatment time of a county as the calendar month in which more than 50

percent of its communities simultaneously publish their digital maps.14 I verify that the

results are robust to various alternative definitions of county-level rollout (see Section 4.1

for details).

Figure 3 maps the staggered introductions of digital flood hazard maps by time and

county. The darker the shade, the more recent the treatment dates; and the unshaded

areas are the untreated. There is no discernible clustering, and there is obvious varia-

tion within regions and states. (Figure 1.b is a consistent micro example showing three

adjacent counties with different publication timing.) I also verify that the digitalization

timing is uncorrelated with either the level of flood risk (see Appendix Figure A.3) or

past flood occurrences (see Section 4.6.2).

One limitation of the CSI database is that it only records the latest map publication

dates, while FEMA aims to review its maps every five years. Thus, a concern is that

some counties may have published digital maps twice, but I only observe the latter. This

might lead to underestimation, as the first treatment is ignored and the county is coded

as control until the second treatment.15 However, Appendix Section A presents evidence

suggesting that FEMA largely falls short of its goal. Hence, the date I observe is likely

to be the county’s only map publication in the 2010s.
14The 50 percent threshold is not a cumulative measure. Instead, it means at least half of the commu-

nities publish the digitalized maps simultaneously in one specific month. This criterion by construction
captures the unique treatment event at the county level.

15Presumably the first treatment is stronger as it combines a marketing campaign and an enhancement
to visual salience (from paper to digital), whereas the second treatment has only the campaign.
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2.4 Presidential Disaster Declaration

I identify flooding incidents using the Presidential Disaster Declaration database. The

declaration process was established in 1988 (by the Stafford Act) for local and state

governments to request federal natural disaster assistance. This database provides infor-

mation on disaster ID numbers, declaration dates, incident begin and end dates, declared

states and counties, and incident types. I categorize certain incident types—Severe Storm,

Hurricane, Flood, Coastal Storm, and Typhoon—as flood-related events. I identify 419

flood-related declarations over my sample period; one declaration typically includes mul-

tiple affected counties.

2.5 Social Connectedness by Facebook

Bailey et al. (2018b) aggregate anonymized information from the universe of friendship

links between all Facebook users as of April 2016 to produce a county-by-county social

connectedness measure. I initially obtained the data through a non-disclosure data-

sharing agreement; the data was later made open source by Facebook. Bailey et al.

(2018b) calculate the Social Connectedness Index (SCI) for a pair of counties as the

number of Facebook friendship links between individuals located in those two counties.

They further create a measure called the relative probability of friendship by dividing

the SCI for county i and j by the product of the number of Facebook users in the two

counties. If this measure is twice as large, it means that a given Facebook user in county

i is about twice as likely to be connected with a given Facebook user in county j. I denote

the relative probability of friendship by pi,j and use it to measure county-by-county social

connectedness.

3 Empirical Strategies

3.1 Staggered Risk Maps Digitalization

My first strategy exploits the staggered introduction of digital flood hazard maps, which

increase the salience of flood risk by enhancing public awareness via campaigns and

by presenting risk information in a visually more salient format. Leveraging variation

in digitalization timings across counties, the identifying assumption of my difference-in-

differences strategy is that, without digitalization, outcomes would have moved in parallel
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in the treated and untreated counties.

I first estimate the following canonical staggered difference-in-differences regression,

which models treatment events as immediate and permanent shifts in the outcome:

Yit = αi + λt + β ∗Digitalizationit + ϵit (1)

In this two-way fixed effects model, unit and time are specified as county and year-month.

Yit measures the number of policies in-force in county i at time t. I normalize the number

in January 2010 to 100 for each county, so that the results are not dominated by extremely

large counties. Let t∗i denote the digitalization time for county i. Digitalizationit is an

indicator variable 1(t > t∗i ) that turns on if county i has published its new digital flood

hazard map at time t; this term is set to zero for untreated counties for any t. αi and

λt are unit and time fixed effects, respectively. The coefficient β measures the change in

the outcome following digitalization. Standard errors are clustered at the county level to

allow for arbitrary dependence of ϵit across t within i.

The identifying assumption requires the digitalization timing to be uncorrelated with

the outcome. If this assumption is not satisfied, the treated counties might already diverge

from the controls before the treatment date. Also, the change in flood risk salience, due to

the digitalization, might not affect households’ insurance decisions immediately; instead,

the impact might develop gradually. To accommodate these possibilities, I also estimate

the following nonparametric model:

Yit = αi + λt +
k=L∑
k=−L

βk ∗ 1(t = t∗i + k) + ϵit (2)

The primary advantage of regression (2) is that it allows me to flexibly and visually

assess the pattern of outcomes relative to the event date. {βk} for k < 0 correspond to

the pre-trends, and {βk} for k > 0 measure the dynamic effects of the digitalized maps.

These effects are measured relative to β−1, which is omitted.

3.2 Social Connectedness and Geographically Distant Floods

My second strategy exploits exogenous variation in flood risk salience caused by cross-

sectional variation in social connectedness with a geographically distant flooded area.
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The idea is that when an individual sees Facebook friends sharing flood experiences, the

possibility of going through a flood becomes more salient.

For a given flooding event f , I identify a set of flooded counties {j}f and a set of

geographically distant states and counties {i}f (that are at least 750 miles away from

the flooded area). Then, within a far-away state, I define the treatment (control) group

as counties that are more (less) socially connected with the flooded area. As the flooded

area {j}f may consist of several counties, I calculate county i’s social connectedness with

the flooded area as a weighted average of the county-by-county relative probability of

friendship pi,j (discussed in Section 2.5):

pi,f =
∑
{j}f

wj ∗ pi,j (3)

where wj represents population-weighting or equal-weighting. Within a state, county i

is coded as treated (control) with respect to event f , if pi,f is above (below) its state

median.

Figure 4 depicts one specific flooding event—Hurricane Florence in September 2018.

It shows a heat map of social connectedness (pi,f , blue-shaded) with the flooded area

(red-shaded). The uncolored counties located less than 750 miles away from the flooded

area are not included in this particular event study with respect to Hurricane Florence.

I stack individual event studies (with respect to every flooding event f), and the

standard errors are clustered at the county level. Each event study features the following

difference-in-differences regression:

Yit = β0 + β1 ∗ Connectedi × Postt + β2 ∗ Connectedi + β3 ∗ Postt + ϵit (4)

Connectedi is the treatment dummy (that turns on if i is eventually treated); Postt is the

post-event dummy (that turns on if t is after the flooding time). The outcome variable

Yit measures the insurance demand in county i at time t, which is defined as in regression

(1). The interaction Connectedi × Postt is the key explanatory variable of interest.

By construction, I define treated and control counties conditionally on being in the

same state, so that they are likely to have similar climatological and economic conditions.

Even if counties in the same state have distinct climates and flood risk, the difference-in-
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differences construct of regression (4) teases out the fixed differences.

More formally, in order to interpret the estimate of β1 as the causal effect of friends’

flood experiences, I need to assume that insurance purchases in treated and control coun-

ties would have evolved in parallel without treatment (i.e., a distant flooding event). I

test for parallel pre-trends by replacing Postt with a sequence of event time dummies

{1(t = t∗ + k)}. The coefficients {βk
1} on the interaction terms {Connectedi × 1(t =

t∗ + k)} allow me to examine the patterns in insurance purchases in the months before

and after the flood experienced by geographically distant friends. I present evidence of

parallel pre-trends in Section 5.1. I discuss potential concerns about this event study

approach in Section 5.3 and consider an alternative empirical methodology.

4 Empirical Findings: Digitalization of Risk Maps
In the following two sections, I test the hypothesis that households will demand more

flood insurance if the salience of flood risk increases. Section 4 presents the results of my

first quasi-experiment, which exploits the staggered introduction of digital flood hazard

maps across US counties. I also provide additional evidence supporting the hypothesized

channel of salience and evaluate several alternative explanations.

4.1 Main Results: Digitalization and Insurance Purchases

Table 2 presents the staggered difference-in-differences estimates of regression (1). I

examine the change in the number of policies in-force (with January 2010 normalized to

100). The standard errors are clustered at the county level to adjust for autocorrelation.16

Column 1 shows that the average number of insurance policies goes up dramatically by

21.39, following the digitalization of flood risk maps. Note that this is the mean treatment

effect over the entire post period, and it corresponds to an increase of 19.91% relative to

the mean of 107.42 at event time zero.

The result is robust to a variety of alternative specifications and sample restrictions.

For example, in column 2, I add county-level covariates, including the average premium

per policy and the average coverage per policy. In column 3, I exclude the never-treated

counties from my analysis; thus, to control for any underlying trends, the staggered
16In fact, the clustered standard errors are almost 10 times larger than the non-clustered ones, sug-

gesting strong positive autocorrelation. This is not surprising, as the policies are renewed annually.

14



difference-in-differences estimation uses only counties that have not yet had digitalization

or have already had digitalization. This specification addresses the concern that some

never-treated counties (e.g., located in the desert) are poor counterfactuals. In both

columns, the coefficient estimate has a similar magnitude and statistical significance.

I assess the robustness of my treatment construction in several dimensions. First of

all, column 4 of Table 2 considers a continuous treatment approach and obtains a similar

result. As detailed in Section 2.3, in my baseline discrete specification, a county is defined

as treated if more than half of its communities publish digital maps in the same month. In

column 4, I refine the treatment indicator Digitalizationit to be the cumulative fraction

of digitalized communities. In the extreme case, in which all communities always publish

digital maps simultaneously, the continuous and binary approaches are identical.

Appendix Table A.1 addresses the concern that population is not evenly distributed

across communities. I refine the treatment definition to be population-weighted; that

is, a county becomes treated in a given month if more than half of its population gets

access to digital flood maps in that month. Since population data is not available at the

community level, I use the number of policyholders as a proxy. Columns 1 through 3

show that my results hold. Additionally, in columns 4 and 5, I use different thresholds

to construct the binary treatment; the results are consistent.

Appendix Table A.2 shows that the results are also insensitive to sample selection.

In my baseline specification, I estimate regression (1) using the full sample and do not

impose any restrictions on leads and lags. In this table, I restrict the event window by

various specifications of different leads and lags. The estimates demonstrate a similar

magnitude and statistical significance across all specifications.

Figure 5 shows the dynamic effects of digitalization on insurance purchases. It plots

the coefficient estimates of the event time dummies from regression (2). Crucially, there is

no evidence of a differential pre-trend in the treated counties. This addresses the concern

that the treatment assignment endogenously captures trends in the outcome variable; for

instance, the government might expedite digitalization in counties that are experiencing

an increase in underlying flood risk. The parallel pre-trend rejects such an explanation

and validates the identifying assumption (see more discussions in Section 4.6.1).

Figure 5 also shows that, following digitalization, insurance purchases rise sharply.

The impact is visually apparent, gradual, and persistent. In the first six months following
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digitalization, households in the treated counties collectively buy, on average, 17.69 more

flood insurance policies (corresponding to a 16.47% increase over the mean of 107.42 at

event time zero). This gap continues widening to 32.84 (or 30.57%) at the end of the

first year post digitalization. Thereafter, the number of policies in-force remains stable

and never reverts. Recall that the policies are renewed annually. Thus, comparing event

months 1-6 with event months 13-18, we could posit that the additional purchases made

immediately after digitalization are renewed in the next year. To illustrate that the

impact is not transitory, Appendix Figure A.4 extends the same plot to a horizon of 8

years and shows that the pattern persists in the long run.

4.2 First-time Buyers and Renewals

In this section, I investigate the surge in insurance purchases in more detail. I examine

the number of policies purchased (a flow measure), complementing the previous analysis

of the number of policies in-force (a stock measure). The main benefit of the flow measure

is a clear decomposition of all purchases into two parts—first-time buyers and existing

buyers (i.e., renewal decisions).

Figure 6.a depicts the dynamic effects of digitalization on the number of policies pur-

chased. Similar to Figure 5, there is no evidence of a differential pre-trend in the treated

counties. There is a sharp spike immediately following the publication of the digitalized

maps—the transaction volume increases by 80 percent in event month 2. Interestingly,

the dynamic effects display a recursive pattern. For instance, the second spike of insur-

ance purchases occurs in event month 14, suggesting that the additional purchases are

renewed one year later.

In the next step, I decompose the number of insurance purchases (time-specific) into

policies bought by first-time buyers (Figure 6.b) and policies renewed by existing buy-

ers (Figure 6.c). Note that these classifications of buyers are time-specific. Figure 6.b

shows that the number of first-time buyers triples two months following digitalization.

Noticeably, there is only one spike in Figure 6.b, as the first-time buyers in event month

2 become existing buyers by definition at the time of renewal in event month 14. This is

consistent with the spike observed in Figure 6.c in that same month.

Crucially, Figure 6.c also suggests that digitalization has little impact on the extensive

margin of existing policyholders, as we do not see households canceling or failing to
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renew their policies around event time zero. This finding has important implications for

differentiating among alternative explanations (see details in Section 4.6).

4.3 Risk Map Digitalization and House Prices

The salience theory suggests that consumers place greater weight on product attributes

that are salient (Bordalo et al., 2012, 2013; Kőszegi and Szeidl, 2013). In this section, I

study a product that is closely related to flood risk—houses.

Conceptually, when flood risk is not salient, people pay limited attention to a prop-

erty’s flood risk exposure (a product attribute). As a result, this low-salience risk is

not fully priced into real estate values. My hypothesis implies that when the digitaliza-

tion of flood hazard maps increases its salience, we should expect it to be more heavily

priced—that is, to drag down house prices.

Empirically, I examine the effect of digitalization on house prices in the same frame-

work as regression (1). I obtain the monthly county-level home value index from Zillow

(with January 2010 normalized to 100). Zillow provides separate indices for different

types of homes, such as all homes, single-family homes, top-tier homes, bottom-tier

homes, and homes with 1, 2, 3, 4, or 5+ bedrooms. For robustness, I also use the

yearly county-level house price index from the Federal Housing Finance Agency (FHFA),

in which case, I collapse my NFIP data on an annual basis as well.

Table 3 reports the coefficient estimates using the Zillow data. The baseline result,

presented in column 1 of Panel A, suggests that the average treatment effect on house

price index (all homes) is −1.86, corresponding to a 1.80% decrease relative to the mean

value of 103.50 at event time zero. Column 2 includes covariates, such as the county-

level median household income and unemployment rate. While they show significant

explanatory power (unreported for brevity), the coefficient estimate of digitalizationit

is fairly unaffected. In column 3, I examine single-family homes only. The result is

qualitatively and quantitatively similar.

Columns 4 and 5 demonstrate the heterogeneous effects of digitalization across the dis-

tribution of house prices. Zillow measures its house price index for the top-tier (bottom-

tier) homes by using properties with values within the 65th to 95th (5th to 35th) percentile

range for a given county. The results suggest that the impact of the introduction of dig-

ital maps is stronger for the cheaper properties, as the price drop for top-tier houses is
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0.4 percentage point smaller than that for bottom-tier houses.

Panel B of Table 3 examines the house price indices of homes with various numbers of

bedrooms. In all cases, there is a significant decrease after digitalization. Interestingly, the

price drop is monotonically smaller in magnitude for houses with an increasing number of

bedrooms. This result is consistent with the comparison in Panel A between the top-tier

and bottom-tier homes.

Figure 7 shows the dynamic effects (using the baseline index of all homes). Firstly

and crucially, there is little evidence of a differential pre-trend in the treated counties.

Following digitalization, the house price index is apparently trending downwards. This

result suggests that flood risk, once it attracts more public attention and has higher

salience, is more extensively incorporated into asset prices. Finally, it is interesting to

notice that unlike the immediate surge in flood insurance purchases (see Figure 5), the

downward trend in house prices continues for a few years and then stabilizes around −2%.

A plausible explanation is that housing transactions are much less liquid than insurance

purchases.

For robustness, Appendix Figure A.5 presents the results of using the alternative

annual house price index obtained from the FHFA. The downward post-digitalization

trend has a similar pattern, and the estimate is larger in magnitude.

4.4 Salience and Past Flood Occurrence

As a flood would certainly draw the attention of those flooded and increase the salience

of flood risk to them, my hypothesis predicts a smaller impact of digitalization if the

county has recently experienced a flood. Moreover, the correlation should be somewhat

monotonic—the longer the county has not experienced a flood, the stronger the digital-

ization effect should be.

I repeat my main analysis in subsamples of counties that have not had any flood in the

n years prior to the publication of the digitalized maps. Panel A of Table 4 reports the

results up to n = 6 (82% of the counties had at least one flood in the previous six years).

I find an almost monotonic pattern going from columns 1 through 6. For instance, in

counties without a flood in the previous year, digitalization causes the insurance demand

to increase by about 20%, but in counties without a flood for at least six years, the impact

of digitalization is twice as large.
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As the frequency of flooding correlates with the inherent risk, it is worth showing that

I do not merely replicate the variations in the underlying risk. To measure the inherent

flood risk, I leverage the Special Flood Hazard Area (SFHA) defined by the NFIP, which

is expected to have a one-percent or higher probability of being inundated in any given

year. In Appendix Table A.3, I condition on counties with low flood risk (below-median

proportions of SFHA), and I find the same monotonicity seen in Panel A of Table 4.

Panel B of Table 4 presents an alternative perspective to consider the correlation

between salience, flood occurrence, and the effect of digitalization. In Panel B, I examine

counties that had at least one flood in the past n years before digitalization. Given a

value of n (i.e., fixing the column), my hypothesis predicts a larger effect in Panel A than

in Panel B. The results, across all the columns, are consistent with this prediction.

4.5 Heterogeneity across Counties

In this section, I demonstrate the heterogeneity of my finding by examining several factors

that pertain to households’ attention to flood risk management. My hypothesis predicts

that the post-digitalization increase in insurance purchases should be more substantial

in counties where flood risk is more likely to be neglected.

4.5.1 Heterogeneity by Income and Education

I first consider income and education as a proxy for households’ awareness of the im-

portance of mitigating flood risk. To assess if people react differently to the digitaliza-

tion reform, I interact the post-treatment indicator Digitalizationit with Incomei and

Educationi in regression (1). Incomei measures county i’s median household income

(in $1,000), and Educationi measures the share (in percent) of population with college

degrees in county i. The data is obtained from the US Census Bureau.

Columns 1 and 2 of Table 5 report the coefficient estimates of the interactions. The

negative coefficients suggest that counties with more income and education are less re-

sponsive to the publication of the digitalized maps. Quantitatively, $1,000 more in income

or 1 percentage point more of college attainment is associated with 0.65 percentage point

less growth in insurance purchases following digitalization.

My strategy controls for existing differences in levels of insurance purchases (e.g.,

the wealthier are more likley to acquire insurance in the first place), and I estimate the
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heterogeneous effect of the digitalization reform. My result suggests that inattention to

flood risk is potentially more concerning in areas with less education and income.

4.5.2 Heterogeneity by Beliefs about Global Warming

Households’ beliefs about global warming is another useful proxy for their ex-ante at-

tention to flood risk. I obtain data from the Yale Climate Opinion survey (Howe et al.,

2015), which has been used in several recent studies of climate risk (Bernstein et al., 2019;

Baldauf et al., 2020). My main measure, ClimateOpinioni, is the percentage of people,

in county i, who answered “Yes” to the question of whether they think global warming

will harm them personally.

Column 3 of Table 5 reports the coefficient estimate of ClimateOpinioni interacted

with Digitalizationit. The result suggests that a 1-percentage-point increase in the pro-

portion of people who worry about the consequence of global warming leads to a 1.56-

percentage-point decrease in the post-digitalization growth in flood insurance purchases.

Column 4 shows that this effect is not subsumed by the heterogeneity in income.

4.5.3 Heterogeneity by Inherent Risk Level

Because people living in areas with higher inherent flood risk are likely to pay more

attention to it, the digitalization-induced salience shock should be less pronounced in

flood-prone areas. Along this line, I consider several analyses.

First, I define a binary variable 1(Coastal)i, equal to 1 if county i is located in a

coastal state, as a proxy for high flood risk. Second, for every county, I calculate the

proportion of policies originated in the Special Flood Hazard Area (SFHA) over the total

number of policies and define 1(HighRisk)i as a binary variable indicating if county i is

above the median. As before, I examine their interactions withDigitalizationit to capture

any heterogeneous treatment effect. The negative coefficients, reported in columns 5 and

6 of Table 5, suggest that the digitalization effect is stronger in areas with lower flood

risk. Appendix Figure A.6 illustrates the point graphically and verifies that the parallel

pre-trend assumption is satisfied in all subsamples.

Additionally, I exploit the heterogeneous effect within counties. My transaction data

allows me to see if a policy was originated by a household living in the SFHA or not. I

compare the post-digitalization growth in insurance purchases in a treated county’s SFHA
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regions and non-SFHA regions. Columns 1 and 2 of Appendix Table A.4 suggest that the

growth is less than 10 percent in the SFHA regions, but more than 50 percent in the non-

SFHA regions. Column 3 effectively runs a triple-differences regression, showing that the

difference is statistically significant. Consistently, column 4 shows that the proportion of

SFHA policies decreases by 4.7 percentage points in the treated counties. These results

suggest that the reform induces disproportionately more households in moderate- or low-

risk areas to acquire flood insurance.

4.5.4 U-shaped Effect and Inherent Risk Level

Following up on the previous section, I explore the variation in flood risk in a more

granular scope. The digitalization effect is likely to be non-linear in flood risk: on the

one hand, in high-risk areas, the salience is already high; on the other hand, in low-risk

areas, flood insurance is less relevant. Therefore, we expect to see the strongest response

to the digitalization reform in moderate-risk areas—that is, an inverse U-shape.

In column 7 of Table 5, I consider a continuous measure RiskLeveli, which is the

proportion of SFHA policies in county i (in percent), interacting its quadratic form with

the post-treatment dummy Digitalizationit. The result, in column 7, is consistent with

the prediction: the estimated coefficients imply that the largest digitalization effect occurs

when RiskLeveli equals 30 percent.

To illustrate this point graphically, I divide all counties into quintiles based on

RiskLeveli and estimate the digitalization effect in each quintile. Figure 8.a plots the

coefficient estimate of the effect of digitalization on the number of flood insurance policies

in-force. Again, we observe an inverse U-shape. The moderate-risk counties (quintiles 2

and 3) experience the most substantial increase in insurance purchases following digital-

ization, whereas there is little response in the bottom and top quintiles.

To complement the above evidence supporting the salience hypothesis, I document the

same pattern of heterogeneous effects in the post-digitalization housing markets. Figure

8.b plots the coefficient estimate of the effect of digitalization on house prices in quintiles

of counties based on the flood risk measure RiskLeveli. Consistently, we see a U-shape:

the moderate-risk counties display the largest decrease in house prices, whereas there is

little response in the bottom and top quintiles.
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4.6 Alternative Explanations

In this section, I evaluate a number of alternative explanations for my main findings and

present empirical evidence to characterize their relevance.

4.6.1 Non-causal Interpretations

I first address concerns pertaining to the validity of the assumption of quasi-random

treatment. The observed positive relationship between digitalization and flood insurance

demand might not be causal if both are driven by a third factor. One alternative ex-

planation is that the digitalized maps are introduced across geographies that experience

increasing underlying flood risk, which simultaneously drives up insurance purchases. In

other words, the digitalization process might endogenously capture an existing trend in

underlying flood risk and insurance demand. However, the parallel pre-trend, shown in

Figure 5, refutes this explanation. It suggests that the staggered digitalization process

does not capture any existing trends in demand.

However, even in the absence of a pre-trend, the reform could still be endogenous.

One specific alternative mechanism is that the publication of digital maps follows a local

flooding event, and households buy more flood insurance after recently experiencing a

flood, due to either rational learning or behavioral bias. Many papers show that individ-

uals overweight recent experiences (Greenwood and Nagel, 2009; Malmendier and Nagel,

2011; Dessaint and Matray, 2017), including floods (Gallagher, 2014). This explanation

differs from the previous one if flooding is unpredictable, in which case the pre-trend test

might not help. (For instance, two identical counties could have identical dynamics of

flood insurance policies in-force, until a random one of them is hit by a flood.)

Therefore, I provide additional evidence to cast doubt on this alternative explana-

tion. First, Appendix Table A.6 shows that past floods cannot predict the introduction

of digital maps. Second, Appendix Figure A.7 shows that there is no difference in flood-

ing frequency around the time of digitalization, although if this alternative hypothesis

were true, we would expect to see bunching before it. Third, anecdotally, local officials

explicitly declared that the publication of new digital maps is unrelated to recent local

flooding events. For example, in an announcement posted on the official website of the

City of Alexandria, Virginia, it says, “This effort [developing new digital maps] is unre-

lated to recent flooding the city has experienced from flash flooding in July 2019 and,
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more recently, on July 23 [2020].”17

4.6.2 Rational Explanation: Transaction Cost

After addressing the concerns of non-causal interpretations, I continue to explore if there

is a purely rational alternative explanation for why the digitalization reform leads to

increasing demand for flood insurance.

The first purely rational alternative explanation I consider is that the digitalization

reform reduces the transaction cost of acquiring flood risk information. In other words, the

observed marginal households did not buy flood insurance before digitalization because

they found it too costly to search for information about flood risk, not because of a

psychological cost related to inattention.

According to households’ pre- and post-digitalization status, we can categorize four

groups: (1) the insured (who already know their risk exposures as stated in their policies);

(2) the uninsured who saw the paper maps before but decided not to buy flood insurance;

(3) the uninsured who would not have seen the maps without digitalization due to a high

transaction cost; and (4) the uninsured who ignore flood risk and any maps whatsoever.

In this alternative hypothesis, the digitalization does not affect group 1, 2, and 4, as

it does not bring them any new information. Amongst group 3, assuming unbiased prior

beliefs, some of these uninsured households who had previously underestimated their

flood risk exposure would start buying flood insurance, thus accounting for my main

finding; while the other households in group 3 would stay uninsured.

While my data does not allow me to completely rule out this alternative explanation, I

present some evidence that it is unlikely to be the primary channel. First, the transaction

cost of getting paper maps, although difficult to quantify, was likely minimal. Households

could always obtain the scanned copies of paper maps from FEMA’s website, and it was

likely not a hassle to visit their local NFIP offices or call its toll-free hotlines.

Second, as discussed above, under this alternative hypothesis, existing policyholders

(i.e., group 1) should not behave differentially before and after digitalization. However, I

find that digitalization also affects the intensive margin of the already insured households:

they increase coverage per policy by 2.6 percent following digitalization.
17See https://www.alexandriava.gov/floodmap for full information.
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Third, this alternative explanation does not imply that the digitalization effect should

be stronger in moderate-risk areas than in high-risk areas, yet that is what I found, as

discussed in Sections 4.5.2 and 4.5.3.

Fourth, I consider an additional quasi-experiment featuring a reduction in transaction

cost. Appendix Section B details the empirical setting, but in a nutshell, in July 2014,

the government upgraded its online portal to provide improved search functionalities and

greater convenience to users. I test whether this upgrade stimulates insurance demand.

Specifically, I run a standard difference-in-differences regression, where the treated are

counties with digital maps published before July 2014, and the control are counties that

had not implemented digitalization. The result, reported in Appendix Table A.5, suggests

little impact on insurance purchases.

4.6.3 Rational Explanation: Change in Informational Content

The second rational alternative explanation I consider is that the informational content

of the paper and digital maps is fundamentally different and that the observed increase

in insurance purchases merely reflects Bayesian updating. This is a valid concern, as

anecdotally some maps may have been updated while being digitalized.

However, I present evidence that the scope of this alternative channel is small. First,

the Web Appendix presents many examples comparing the digital and paper maps. Vi-

sually, the flood risk information in the two formats appears to be almost identical. I

also find consistent anecdotal evidence; for example, a press release for the new digital

maps for Sussex County, New Jersey, quotes Mary Colvin, Acting Mitigation Director

for FEMA, Region II, as saying: “The new, preliminary map does not present any major

changes in the flood plain.”18

Second, the government suggests that the update component can go either way.

Specifically, for the purpose of my argument, some areas should be downgraded to me-

dian or low-risk, as “overstated hazards can result in potentially unnecessary construction

costs and incorrect insurance rating decisions.” If this alternative explanation is prevail-

ing, we should observe some households cancel or fail to renew their policies (even if the

update is possibly systematically upwards—that is, if disproportionately more areas are

designated with a higher risk). However, my result, presented in Section 4.2, suggests
18See the county’s website: https://www.sussex.nj.us/cn/news/index.cfm?TID=7&NID=17552.
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that digitalization does not have any significant impact on renewals or cancellations.

Third, I show, in Section 4.5.3, that the post-digitalization effect is stronger in areas

with lower inherent flood risk. To reconcile this result, the alternative mechanism needs

to assume that the systematic increases in flood risk (reflected in the new maps) are

disproportionately more significant in lower-risk areas. To the best of my knowledge, this

assumption is not anecdotally supported.

Fourth, using a complementary sample (only yearly) of the program from 1980 to 2000,

I find that map updates (from paper to paper) do not stimulate insurance purchases.19

It suggests that FEMA’s map modifications are likely to be small in scope.

4.6.4 Changes in Insurance Price

Is it possible that the introduction of digital maps comes along with reductions in insur-

ance price? This alternative hypothesis is not possible, as the federal government sets

the NFIP rates and prohibits price discrimination across localities. Therefore, county

officials and agents have no authorization to amend insurance prices while introducing

the new digital maps.20

Nevertheless, to empirically evaluate this alternative explanation, I check whether

there are any price differences before and after digitalization. I consider three county-

level measures of insurance price: the average premium per policy, the average premium

per policy per $1,000 coverage, and the average premium per policy scaled by the pro-

portion of high-risk policies (to account for changes in risk composition). I also examine

the county-level median household income which pertain to the real cost of purchasing

flood insurance. Appendix Figure A.8 shows that there is no evidence to support this

alternative explanation.

5 Empirical Findings: Second Strategy
In this section, I present the findings of my second quasi-experiment, developed in Section

3.2. It complements the results of my first strategy and supports the hypothesis that
19The transaction-level information from the NFIP is available only for after 2009. For the earlier

periods, the program provides the year-end statistics of the number of policies in-force for all counties.
20There were two nationwide reforms regarding insurance rates: the Biggert-Waters Flood Insurance

Reform Act of 2012 and the Homeowner Flood Insurance Affordability Act of 2014. These affect all
counties simultaneously and are controlled for by my difference-in-differences strategy.
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households’ flood insurance decisions are sensitive to the salience of flood risk.

5.1 Social Connectedness and Geographically Distant Floods

I exploit variations in social connectedness on Facebook and leverage non-local floods.

The main idea is that a geographically distant flood should not change or generate any

information about the actual local flood risk. However, non-local flood news potentially

conveys differential degrees of salience to the local households, depending on the strength

of social connectedness.

Using the event study framework of regression (4), I compare the changes in flood

insurance policies in-force across counties in the same state with high versus low levels of

social connectedness to a geographically distant flooded area. The connected (treated)

counties are defined by having a connectedness measure above the state median.

Table 6 reports the coefficient estimates of regression (4). To reject the null hypothesis,

we expect a positive difference-in-differences estimate. In column 1 of Panel A, the

estimate of 1.11 is a 0.94-percent increase over the average number of policies in-force

(117.66) at event time zero. It suggests that, when individuals see geographically distant

Facebook friends sharing flood experiences, increasing the salience of flood risk, more

households decide to acquire flood insurance.

This result is robust to a variety of alternative specifications and sample restrictions.

For example, column 2 uses an equal-weighting scheme in equation (3) to measure a

county’s social connectedness with the flooding counties. Columns 3 and 4 construct the

analysis sample using counties that are at least 500 miles or 1,000 miles away from a

given flood. The effect remains positive and statistically significant.

In Panel B of Table 6, I further check the robustness of my results. Because the

Facebook data is a snapshot as of April 2016, one concern is that the county-by-county

social connectedness might be time-varying. In particular, the measure might not be a

good proxy for the status back in the early 2010s. Panel B of Table 6 uses a sample

period between 2014 and 2017. My findings are not sensitive to the choices of sample

periods.

Figure 9 presents the dynamic effects of the flood experiences of geographically dis-

tant friends. Most crucially, there is no evidence of a differential pre-trend in the con-
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nected counties before the flood, which supports the identifying assumption that the

less-connected counties are an appropriate counterfactual for the more-connected coun-

ties in the same state.

5.2 Salience and Heterogeneity

5.2.1 Monotonicity in Social Connectedness

The salience hypothesis implies that the effect should be monotonic in the strength of

social connectedness. The most-connected counties should show the largest increases in

insurance demand and the least-connected counties should show the least change.

Recall that my baseline analysis (in Table 6) defines the treatment or control group as

respectively above or below the state-median value of the social connectedness measure

as per equation (3). In Panel A of Table 7, I use a sharper approach and compare the top

versus bottom quartiles. The estimates are larger in magnitude across all specifications.

For example, the estimate of 2.20 in column 1 is a 1.88-percent increase over the mean

of 117.09 at event time zero. This suggests that the salience of flood news, transmitted

through social networks, is monotonic in the strength of social connectedness.

5.2.2 Significant Floods

My hypothesis also implies that the most damaging floods should cause the most pro-

nounced salience effect across social networks. Panel B of Table 7 tests this prediction.

I restrict my event study to 18 floods that were characterized as significant by FEMA.21

Across all specifications, the estimate is more than twice as large in magnitude as the

baseline in Table 6. For example, the estimate of 3.08 in column 1 is a 2.64-percent in-

crease over the mean of 116.73 at event time zero; column 4 generates the largest estimate

(5.10%) in this empirical design. This result suggests that a natural disaster’s salience,

transmitting across social networks, is order-preserving.

5.3 Limitation and Alternative Methodology

I use an alternative methodology to address a concern of my event-study design to link

social connectedness with flood insurance purchases. The advantage of my second strat-
21See https://www.fema.gov/significant-flood-events for FEMA’s list of significant flood events. A

significant event is defined as a flooding event with 1,500 or more paid losses.
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egy is that each flooding event characterizes a standard difference-in-differences analysis,

which allows for a straightforward verification of parallel pre-trends. However, the dis-

advantage is that a county could be involved (as either treated or control) in more than

one events, which entails duplicating observations if the event windows overlap. In other

words, instead of one observation per county per time, the event study approach has one

observation per county per event per time.

I first address this problem of non-independent observations by clustering the standard

errors at the county level (as in Tables 6 and 7). The other approach commonly adopted

by empirical researchers is to only use large events, in the hope that they are sufficiently

far apart. The analysis presented in Panel B of Table 7, with only the largest 18 floods

included, is undertaken in this spirit.

In the following, I consider an alternative empirical approach used by Bailey et al.

(2018a). Applying their terminology to my setting, I construct an index, FriendF loodNi,t1,t2 ,

to measure the average flood experience of county i’s social network N between t1 and t2.

The largest social network N is the universe of all other counties; a restricted network

can include only geographically distant ones. Let θNi,j be the share of county i’s friends in

network N who live in county j, and let Floodj,t1,t2 be the number of floods in county j

between t1 and t2. The key explanatory variable is constructed as:

FriendF loodNi,t1,t2 =
∑
j

θNi,j ∗ Floodj,t1,t2 (5)

Bailey et al. (2018a) instrument for the house price experiences of all friends with the

house price experiences of geographically distant friends to identify the causal impact of

friends on an individual’s housing investment decisions. As my primary interest is on

the distant floods, I focus on the reduced-form to capture the average effect of geograph-

ically distant friends. Specifically, I estimate the following regression, with my baseline

specification taking t1 to be 12 months before t2:

log(Policies)i,t = β ∗ FriendF loodDistant
i,t−12,t + FEstate×time + ϵt (6)

I control for the state×time fixed effects, which allow me to isolate the effects of friends’

flood experiences on the insurance decisions of counties located in the same state at the
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same time.

Panel A of Table 8 presents results from regressions (6). The estimate in column 1

suggests that every flood experienced by friends living in geographically distant coun-

ties (at least 750 miles away) increases the local insurance demand by 1.3%. Columns 2

through 4 show that my result is robust to a variety of specifications with different mea-

surement windows of floods. Columns 5 through 7 show that my result is also insensitive

to a variety of definitions of “geographically distant”.

Panel B of Table 8 repeats the analysis by focusing on the experiences of significant

floods only (as defined in Section 5.5.2). Across all columns, the estimates in Panel B

are more than twice the baseline in Panel A. For example, the estimate in column 1

means that when geographically distant friends experience a significant flood, the local

county’s demand for flood insurance increases by 4.2%. Consistent with my event study

methodology, these findings suggest that a distant flood’s salience effect, transmitting

across social networks, is order-preserving.

6 Conclusion
This paper examines how households make insurance decisions against flood risk. I

use two empirical strategies to identify a causal effect of the salience of flood risk on

households’ willingness to acquire flood insurance. My results suggest that households

pay limited attention to flood risk, due to its low salience. But because the expected cost

of neglecting flood risk is large, US policymakers are seeking ways to stimulate insurance

take-up. My findings suggest that one effective way is to increase the salience of flood risk

by running campaigns to enhance public awareness, presenting risk information in more

salient formats to households, and covering non-local flood news on local media. This

insight could be widely generalized to other types of tail risk (especially natural disaster

risk) and to other countries.
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Figures and Tables

(a) Paper Map Published on November 16, 1995

(b) Digital Map Published on June 16, 2016

Figure 1. An Example of a National Flood Insurance Program Flood Hazard Map

This figure shows the flood hazard maps developed by the National Flood Insurance Program for the
Town of Colfax, Grant Parish, Louisiana. Figure (a) is a scanned copy of the legacy paper map, which
was published on November 16, 1995. For readability, only the most relevant information is presented
here, and the full copy can be found at https://msc.fema.gov/portal. Figure (b) shows the corresponding
digital map published on June 16, 2016. The two maps present identical information about the flood
risk in the Town of Colfax (except that the jurisdiction boundary is slightly different).

34



(a) Open House Invitation on Local News (b) Advertisement on Community Blog

(c) Open House Invitation via Facebook (d) Announcement of New Maps Publication

(e) Brochure (f) Local Newspaper

Figure 2. Local Advertisements of Flood Risk Open Houses and Map Publication

This figure presents examples of county governments advertising Flood Risk Open Houses and the pub-
lication of new flood maps.
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Figure 3. Empirical Strategy 1: Staggered Digitalization of Flood Risk Maps

The figure shows the rollout of the digitalization program by county and time. The darker shade rep-
resents the more recent publication date of the digitalized maps. The unshaded counties represent the
untreated group.
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Figure 4. Empirical Strategy 2: Social Connectedness and Geographically Distant Floods

This figure shows one specific example to illustrate the empirical design of the second quasi-experiment.
Hurricane Florence hit South Carolina, North Carolina, and Virginia in September 2018. The flooding
counties are red-shaded on the map. The blue shades depict the heat map of social connectedness with
the flooding area. Only counties located at least 750 miles away from the flooding area are considered.
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Figure 5. The Impact of Map Digitalization on the Outstanding Insurance Policies

This figure shows the dynamic effects of risk maps digitalization on insurance purchases. It plots the
coefficient estimates of {βk} in the regression: Yit = αi + λt +

∑
k βk ∗ 1(t = t∗i + k) + ϵit. {βk} are

measured relative to β−1 which is omitted. The dependent variable Yit measures the number of flood
insurance policies in-force (with January 2010 normalized to 100) in county i in month t. t∗i is the
publication time of the digitalized maps in county i. 1(t = t∗i + k) is set to zero for the untreated. αi

and λt are the county and year-month fixed effects. Standard errors are clustered at the county level.
The bands around the coefficient estimates show the 95% confidence intervals.
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(a) All Purchases
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(b) First-time Buyers (time-specific)
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(c) Existing Buyers (time-specific)

Figure 6. The Impact of Map Digitalization on the Insurance Purchases (Flow Measure)

This figure plots the coefficient estimates of {βk} in the regression: Yit = αi+λt+
∑

k βk ∗1(t = t∗i + k)+

ϵit. In figure (a), Yit measures the number of flood insurance policies purchased in county i in month t. In
figure (b), Yit measures the number of flood insurance policies purchased by first-time buyers in county i

in month t. In figure (c), Yit measures the number of flood insurance policies renewed by existing buyers
in county i in month t. In all cases, Yit is normalized with the value of January 2010 being 100. All the
other variables are defined as per Figure 3. Standard errors are clustered at the county level. The bands
around the coefficient estimates show the 95% confidence intervals.
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Figure 7. The Impact of Risk Maps Digitalization on Housing Price

This figure shows the dynamic effects of risk maps digitalization on house prices. It plots the coefficient
estimates of {βk} in the regression: HousePriceit = αi + λt +

∑
k βk ∗ 1(t = t∗i + k) + ϵit. {βk} are

measured relative to β−1 which is omitted. The dependent variable HousePriceit is the house price
index (with January 2010 normalized to 100) in county i in month t. t∗i is the calendar month when
county i publishes its digitalized maps. 1(t = t∗i + k) is set to zero for the untreated. αi and λt are the
county and year fixed effects. Standard errors are clustered at the county level. The bands around the
coefficient estimates show the 95% confidence intervals.
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(a) Heterogeneous effect on insurance purchases by risk-quintiles
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(b) Heterogeneous effect on house prices by risk-quintiles

Figure 8. The Impact of Map Digitalization on the Insurance Purchases (Flow Measure)

This figure shows the coefficient estimate of Digitalizationit in different subsamples from the regression:
Yit = αi + λt + β ∗Digitalizationit + ϵit. All counties are divided into quintiles based on a measure of
inherent flood risk RiskLeveli, which is the proportion of Special Flood Hazard Areas (SFHA). In figure
(a), the dependent variable Yit measures the number of flood insurance policies in-force (with January
2010 normalized to 100) in county i in month t. In figure (b), Yit measures the average house prices (with
January 2010 normalized to 100) in county i in month t. The main explanatory variable Digitalizationit

is a binary variable indicating if county i has published the digitalized maps at time t. αi and λt are
the county and year-month fixed effects. Standard errors are clustered at the county level. The bands
around the coefficient estimates show the 90% confidence intervals.
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Figure 9. The Impact of Friends’ Flood Experiences on Insurance Purchases

This figure shows the dynamic effects of geographically distant friends’ flooding experiences on insurance
purchases. It plots the coefficient estimates of {βk} from the event study design: Yit = β0 +

∑
k β

k
1 ∗

Connectedi × 1(t = t∗ + k) + β2 ∗ Connectedi +
∑

k β
k
3 ∗ 1(t = t∗ + k) + ϵit. For notational brevity, the

event index f is omitted from the equation. {βk
1} are measured relative to βk=−1

1 which is omitted.
For a given flood event f and the associated flooding counties {j}f , Connectedi is a binary variable
indicating if county i is socially connected with the flooding area, which is defined as having a value of
the connectedness measure above the state-median. t∗ is the occurrence month of the geographically
distant flood. The analysis sample consists of only counties that are at least 750 miles away from the
flooding area. The dependent variable Yit measures the number of flood insurance policies in-force (with
January 2010 normalized to 100) in county i in month t. Standard errors are clustered at the county
level. The bands around the coefficient estimates show the 95% confidence intervals.

42



Table 1: Descriptive Statistics of the NFIP
This table presents descriptive statistics that characterize the National Flood Insurance Program
(NFIP) data in my sample from January 2010 to August 2019. Panel A summarizes the time-
series variations for the entire program. Policies in-force is the number of effective insurance
policies in a given month. Premium is the total dollar amount of premiums collected from the
policies in-force in a given month. Coverage is the total dollar amount of coverages for the
policies in-force in a given month. Flood-prone policies is calculated as the number of policies
in the Special Flood Hazard Area (SFHA) over the total number of policies. The NFIP creates
risk maps and designates flood zones, and the SFHA is defined as the area that has a 1-percent
or higher probability to be inundated in any given year. Panel B summarizes the cross-sectional
variations of the data at the county level.

Panel A: Nationwide Time-Series Varation

mean s.d. 25th pctl. 50th pctl. 75th pctl.

Policies in-force (m) 5.29 0.22 5.08 5.32 5.51
Premium ($b) 3.32 0.13 3.26 3.30 3.41
Coverage ($t) 1.26 0.03 1.24 1.26 1.28
Premium per policy ($) 628 35.8 599 647 654
Coverage per policy ($k) 238 12.1 229 239 249
Flood-prone policies (%) 52.2 3.8 49.6 52.9 55.7

Panel B: County-level Cross-Sectional Variation

mean s.d. 25th pctl. 50th pctl. 75th pctl.

Policies in-force 1,766 12,563 31 120 437
Premium ($k) 1,108 6,251 21 88 325
Coverage ($m) 421 3,023 4.8 20 83
Premium per policy ($) 754 358 554 697 876
Coverage per policy ($k) 185 68 137 185 232
Flood-prone policies (%) 53.3 23.8 37.8 55.2 70.8
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Table 2: Insurance Demand and Risk Maps Digitalization
This table shows results from the two-way fixed effect regression: Yit = αi + λt + β ∗
Digitalizationit +Xit + ϵit. The panel covers 3,053 counties from January 2010 to Au-
gust 2019. The dependent variable Yit measures the number of flood insurance policies
in-force (with January 2010 normalized to 100) in county i in month t. The main explana-
tory variable Digitalizationit is a binary variable indicating if county i has published the
digitalized maps at time t; this term is set to zero for the control counties without digi-
talization. Digitalizationit aggregates the community-level digitalization process to the
county level: treatment is defined as more than 50 percent of the communities in county i
publish the digitalized maps in the same month. Alternatively, Digitalizationit is defined
as a continuous variable that equal to the cumulative fraction of digitalized communities
in county i in month t. αi and λt are the county and year-month fixed effects. Xit are
the covariates: Premiumit is the average premium per policy (in $), and Coverageit is
the average coverage per policy (in $k). Standard errors are clustered at the county level
and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4)

Digitalization 21.39*** 21.41*** 20.57*** 24.97***
(5.66) (5.66) (5.13) (5.78)

Premium -0.003 -0.005
(0.01) (0.01)

Coverage -0.069 0.005
(0.05) (0.10)

Observations 347,852 347,852 176,251 347,852
R-squared 0.69 0.69 0.75 0.69
Include never-treated Y Y N Y
Treatment construction Discrete Discrete Discrete Continuous
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Table 3: House Prices and Risk Maps Digitalization
This table shows results from the two-way fixed effect regression: Yit = αi+λt+β ∗Digitalizationit+Xit+ ϵit.
The dependent variable Yit measures the house price index of county i in month t. The house price data is
obtained from Zillow. Zillow provides separate county-level house price indices for different types of houses,
such as All Homes, Single-Family Homes, Top-tier Homes (within the 65th to 95th percentile range for a given
county), Bottom-tier Homes (within the 5th to 35th percentile range for a given county), and Homes with 1, 2,
3, 4 or 5+ bedrooms. The main explanatory variable Digitalizationit is an indicator variable which turns on if
county i has launched digitalized risk maps at time t; this term is set to zero for the control counties without
events. αi and λt are the county and time fixed effects. Xit are the covariates. Income is the median household
income (in $1,000); Unemployment is the unemployment rate (in percent). Standard errors are clustered at
the county level and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5)

Panel A: Zillow Home Value Index with Various Price Ranges

Digitalization -1.86*** -1.69*** -1.66*** -1.56*** -1.99***
(0.46) (0.42) (0.43) (0.38) (0.45)

Observations 312,901 289,881 289,851 289,994 289,623
R-squared 0.80 0.79 0.79 0.79 0.79
House Type All Homes All Homes Single-Family Top Tier Bottom Tier
Covariates N Y Y Y Y

Panel B: Zillow Home Value Index with Various Sizes

Digitalization -2.25*** -2.23*** -1.64*** -1.45*** -1.28***
(0.52) (0.45) (0.42) (0.41) (0.42)

Observations 256,995 287,065 289,833 288,203 281,498
R-squared 0.72 0.75 0.79 0.80 0.79
House Type 1 bedroom 2 bedrooms 3 bedrooms 4 bedrooms 5+ bedrooms
Covariates Y Y Y Y Y
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Table 4: Salience and Past Flood Occurrence
This table shows results from the two-way fixed effect regression: Yit = αi+λt+β∗Digitalizationit+
Xit + ϵit. All the variables are defined as per Table 2. Panel A runs the regression in subsamples of
counties that have not had any flood in the previous n years prior to the publication of the digitalized
maps. Panel B uses subsamples of counties that have had at least one flood in the previous n years
before digitalization. Standard errors are clustered at the county level and presented in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Panel A: no flood in the past n years

Digitalization 22.37*** 25.74*** 22.94** 28.08** 35.14** 47.79**
(6.86) (8.79) (9.44) (12.08) (15.62) (21.17)

Observations 125,560 93,121 66,571 47,745 30,718 19,358
R-squared 0.72 0.71 0.72 0.71 0.71 0.69

Panel B: with a flood in the past n years

Digitalization 14.45*** 13.84*** 19.13*** 17.24*** 16.11*** 16.09***
(4.85) (4.60) (6.30) (5.42) (4.93) (4.60)

Observations 48,104 80,543 107,093 125,919 142,946 154,306
R-squared 0.83 0.79 0.77 0.77 0.77 0.77
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Table 5: Heterogeneity of the Digitalization Effect Across Counties
This table shows results from the regression: Yit = αi + λt + β ∗Digitalizationit + γ ∗Digitalizationit × Zi + ϵit. Zit

captures the heterogeneity of ex-ante awareness of flood risk across counties. Incomei is the median household income
(in $1,000) in county i. Educationi is the percentage of people with college degrees (in percent). ClimateOpinioni is
the percentage of people (in percent) who answered “Yes” to the question of whether they think global warming will
harm them personally, which is obtained from the Yale climate opinion survey (Howe et al., 2015). 1(Coastal)i is a
binary variable indicating if county i is from a coastal state or not. 1(HighRisk)i is a binary variable indicating if
county i’s proportion of the Special Flood Hazard Area (SFHA) is above the nationwide median. The SFHA defined
by the NFIP as an area with a 1-percent or higher probability of being inundated in any given year. RiskLeveli is a
continuous proxy for county i’s flood risk level, which is the proportion of SFHA (in percent). RiskLevel2i is the square
of RiskLeveli. All the other variables are defined as per Table 2. Standard errors are clustered at the county level and
presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7)

Digitalization 50.55*** 35.42*** 81.11*** 112.61*** 45.96*** 135.49*** 21.46
(13.97) (9.41) (24.85) (34.08) (12.38) (38.94) (21.44)

Digitalization ×
Income -0.65** -0.59** -0.78***

(0.27) (0.27) (0.29)
Education -0.65**

(0.31)
ClimateOpinion -1.56** -1.72** -1.54**

(0.63) (0.67) (0.71)
1(Coastal) -21.61** -19.73**

(9.09) (9.18)
1(HighRisk) -26.96*** -29.76***

(10.21) (10.53)
RiskLevel 1.02

(0.83)
RiskLevel2 -0.017**

(0.0079)
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Table 6: Flood Insurance Purchases and Social Connectedness
This table shows results from the event study: Y f

it = β0+β1 ∗Connectedfi ×Postft +β2 ∗Connectedfi +

β3 ∗ Postft + ϵfit. For a given flood event f and the associated flooding counties {j}f , county i’s
social connectedness to {j}f is measured by the relative probability of Facebook friendship pi,f =∑

{j}f
wj ∗pi,j , where pi,j is the county-by-county probabilities obtained from Bailey et al. (2018b). wj

represents population-weighting or equal-weighting scheme. Connectedi is a binary variable indicating
if county i is socially connected with the flooding area, which is defined as having a value of pi,f above
the state-median. The analysis sample consists of only counties that are geographically distant to the
flooding area. Three different choices of distance threshold are considered: being 500, 750 and 1,000
miles. Postt is a binary variable indicating post-flood periods. The dependent variable Yit measures the
insurance demand in county i in month t, which is defined as per Table 2. Panel A uses the full sample
period from January 2010 to August 2019. Panel B uses a restricted sample period from January 2014
to December 2017. Standard errors are clustered at the county level and presented in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4)

Panel A: Full Sample Period 2010-2019

Connected ∗ Post 1.11*** 0.90*** 0.86*** 1.54***
(0.20) (0.20) (0.19) (0.24)

Observations 23,369,392 23,369,392 32,114,276 16,335,272

Panel B: Restricted Sample Period 2014-2017

Connected ∗ Post 1.28*** 0.86*** 0.77*** 1.72***
(0.28) (0.26) (0.23) (0.35)

Observations 8,760,517 8,760,517 12,028,168 6,019,329

Connectedness Weight PW EW PW PW
Distance Threshold 750 750 500 1000
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Table 7: Heterogeneity of Social Connectedness and Flood Salience
This table shows results from the event study: Y f

it = β0+β1∗Connectedfi ×Postft +β2∗Connectedfi +

β3 ∗ Postft + ϵfit. Panel A and B consider two deviations from the baseline specifications presented in
Table 6; otherwise, the variables are defined as per Table 6. In Panel A, Connectedi is defined as a
binary variable that equals one if county i has a connectedness measure in the top quartile of the state
and equals zero if county i has a connectedness measure in the bottom quartile of the state. Panel B
only includes the significant flood events defined by the FEMA. Standard errors are clustered at the
county level and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4)

Panel A: Top vs. Bottom Quartiles of Connectedness

Connected ∗ Post 2.20*** 1.74*** 1.91*** 2.98***
(0.30) (0.30) (0.30) (0.37)

Observations 11,965,523 11,965,523 12,576,973 8,101,031

Panel B: Subsample of Significant Floods

Connected ∗ Post 3.08** 4.57*** 4.12** 5.95***
(1.43) (1.44) (1.64) (2.02)

Observations 688,352 688,352 1,107,478 381,157

Connectedness Weight PW EW PW PW
Distance Threshold 750 750 500 1000
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Table 8: Alternative Methodology of Estimating the Causal Effect of Social Connectedness
This table shows results from regression: log(Policies)i,t = β ∗FriendF loodDistant

i,t−k,t +FEstate×time + ϵt. Following the methodology
proposed by Bailey et al. (2018a), FriendF loodNi,t−k,t measures the average flood experience of a county i’s social network N between
t−k and t. FriendF loodNi,t−k,t is calculated as the weighted average as

∑
j θ

N
i,j ∗Floodj,t−k,t, where θNi,j is share of county i’s friends

in network N who live in county j, and Floodj,t−k,t is the number of floods in county j between t−k and t. A geographically distant
network N = Distant is a set of counties that are certain miles away from county i. Columns 1 through 4 show results of using 750
miles as the threshold; columns 5 through 7 use 250, 500, and 1,000 miles, respectively. The measurement window (i.e. k) of floods
takes values of 3, 6, 12 or 24 months. FEstate×time are the state×time fixed effects. Standard errors are clustered at the county
level and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7)

Panel A: Geographically Distant Friends’ Flood Experiences

FriendF loodDistant
i,t−k,t 0.013*** 0.012*** 0.011*** 0.013*** 0.009*** 0.011*** 0.012***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
Observations 321,511 349,443 340,120 284,729 321,511 321,511 321,511
R-squared 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Panel B: Geographically Distant Friends’ Significant Flood Experiences Only

FriendF loodDistant
i,t−k,t 0.042*** 0.041*** 0.041*** 0.033*** 0.043*** 0.067*** 0.042***

(0.004) (0.005) (0.004) (0.003) (0.005) (0.006) (0.004)
Observations 321,511 349,443 340,120 284,729 321,511 321,511 321,511
R-squared 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Distance Threshold 750 miles 750 miles 750 miles 750 miles 250 miles 500 miles 1,000 miles
Flood Window 12 months 3 months 6 months 24 months 12 months 12 months 12 months
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Appendix

A. Multiple Publications of Risk Maps
As discussed in Section 2.3, the FEMA’s Community Status Information only provides the publication

date of the latest map. As the FEMA aims to review their maps every five years, in principle, a county

may have two publication dates during my 10-year sample period, and in which case, the first publication

should capture the digitalization of interest. In this section, I present a set of evidence to show that the

FEMA fails this goal, and in reality, new publications take place much longer than every five years.

First, in an official audit report titled “FEMA Needs to Improve Management of Its Flood Mapping

Programs” published in September 2017, evidence suggests that more than half of the database falls

behind schedules.

Second, according to the FEMA’s Community Status Information (as of June 2020), almost 75% of

the communities have an effective date more than five years old, i.e., the latest update was before June

2015. Moreover, 37% or 13% of the maps are more than 10 or 20 years old. These statistics indicate

that the FEMA has been struggling to keep pace with its goal.

Third, I have downloaded the Community Status Information at two points in time—December

2019 and June 2020. By comparing the effective dates in the two downloads, I can identify a sample of

communities that have published new maps in 2020, i.e., the communities with two different dates in the

two downloads. For these communities, I can impute the time spell between the two publications. I find

412 such cases in total, and on average, it takes 11.5 years to publish a new map.
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B. The New Map Service Center and Information Cost
In July 2014, the FEMA launched a new online portal, known as the Map Service Center (MSC), to

replace the legacy one. The new portal enhances address search, integrates products, improves user

interface, and provides a variety of other upgrades and new features. More details can be found in the

FEMA’s newsletter.22

Appendix Figure A.9 presents screenshots of the new and old websites, obtained from the Wayback

Machine. Consistent with the timeline discussed above, the old portal’s last appearance was on July 22,

2014, and the new MSC is available since July 28, 2014. As shown, the announcement on the website

said, “Welcome to the New FEMA Flood Map Service Center! A series of major changes, including a

complete site redesign, have taken effect on the MSC. All flood hazard products are now available free

of charge, and the former products catalog has been replaced with an integrated Search All Products

feature that allows you to find and download all products for a geographic area.”

In this setting, I construct the treatment group as counties that had published the digitalized maps

before the new MSC. Thus, households in the treated counties have experienced using both portals. In

comparison, the control group consists of counties with no digitalized maps yet. Thus, the upgrade is

irrelevant. I estimate a standard difference-in-difference model:

Yit = β0 + β1 ∗ Treatedi × Postt + β2 ∗ Treatedi + β3 ∗ Postt + ϵit (7)

Treatedi is the treatment dummy indicating whether county i has digitalized risk maps. Postt is a

binary variable indicating if t is posterior to July 2014. β1 is the difference-in-differences estimate of

interest.

22https://www.fema.gov/media-library-data/1405342400259-4b9d70489f7e9f6ffd90ba001182f112/The
+New+FEMA+Flood+Map+Service+Center.pdf
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Appendix Figures and Tables

Figure A.1. The Number of Policies In-force (Averages of 2010-2019)

This figure shows a heat map of the geographical distribution of the number of flood insurance policies
in-force at the county level. Darker shades represent higher densities.
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Figure A.2. Predicted Human Eye Fixations

This figure shows the digitalized flood hazard map and the corresponding scanned paper map side by
side as one image, and it shows an overlay heat map of predicted human eye fixations on the image. The
prediction is generated by a machine-learning-based methodology called the Saliency Attentive Model
(SAM) developed by Cornia et al. (2018). The darker the heat map, the more attention is allocated to
that area of the image.
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Figure A.3. Digitalization Timing and Flood Risk Levels

This figure plots the time-series of the share of high-risk counties among newly digitalized counties. For
each month, the y-variable is calculated as the number of high-risk counties that publish digitalized maps
divided by the total number of counties that publish digitalized maps in that month. A county is defined
as high-risk if its proportion of the Special Flood Hazard Area (SFHA) is above the nationwide median.
The SFHA defined by the NFIP as an area with a 1-percent or higher probability of being inundated in
any given year.
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Figure A.4. The Impact of Risk Map Digitalization: Normalized Outstanding Policies

This figure shows the dynamic effects of risk maps digitalization on insurance purchases. It plots the
coefficient estimates of {βk} in the regression: Yit = αi + λt +

∑
k βk ∗ 1(t = t∗i + k) + ϵit. {βk} are

measured relative to β−1 which is omitted. The dependent variable Yit measures the number of flood
insurance policies in-force (with January 2010 normalized to 100) in county i in month t. t∗i is the
publication time of the digitalized maps in county i. 1(t = t∗i + k) is set to zero for the untreated. αi

and λt are the county and year-month fixed effects. Standard errors are clustered at the county level.
The bands around the coefficient estimates show the 95% confidence intervals.
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Figure A.5. The Impact of Risk Maps Digitalization on House Prices

This figure shows the dynamic effects of risk maps digitalization on county-level house price index. It plots
the coefficient estimates of {βk} in the regression: HousePriceit = αi + λt +

∑
k βk ∗ 1(t = t∗i + k) + ϵit.

{βk} are measured relative to β−1 which is omitted. The dependent variable HousePriceit is the house
price index (with January 2010 normalized to 100) in county i in year t, which is obtained from the Federal
Housing Finance Agency. t∗i is the year when county i publishes its digitalized maps. 1(t = t∗i + k) is set
to zero for the untreated. αi and λt are the county and year fixed effects. Standard errors are clustered
at the county level. The bands around the coefficient estimates show the 95% confidence intervals.

57



-2
0

0
20

40
60

N
um

be
r o

f P
ol

ic
ie

s 
In

-fo
rc

e 
(J

an
. 2

01
0 

N
or

m
al

iz
ed

 to
 1

00
)

 

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 

Event Time (month)

Subsample of Inland Counties Subsample of Coastal Counties

(a) Subsamples of Inland vs. Coastal Counties
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(b) Subsamples of High vs. Low Share of SFHA

Figure A.6. Heterogeneity by Flood Risk Across Counties

This figure shows the dynamic effects of risk maps digitalization on insurance purchases, in subsamples.
All the variables and the regression are defined as per Figure 3. Figure (a) splits the sample by whether
the county is from a coastal state or not. Figure (b) splits the sample by whether the county has an
above- or below-median value of the proportion of the Special Flood Hazard Area (SFHA). The SFHA
defined by the NFIP as an area with a 1-percent or higher probability of being inundated in any given
year. Standard errors are clustered at the county level. The bands around the coefficient estimates show
the 95% confidence intervals.
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Figure A.7. The Impact of Digitalization on Flood Occurrence

This figure shows the dynamic effects of risk maps digitalization on flood occurrence. It plots the
coefficient estimates of {βk} in the regression: Yit = αi+λt+

∑
k βk ∗1(t = t∗i + k)+ ϵit. The dependent

variable Yit measures the number of floods in county i in month t. All the other variables are defined as
per Figure 3 (or Figure A.4). Standard errors are clustered at the county level. The bands around the
coefficient estimates show the 95% confidence intervals.
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(b) Premium/Coverage
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(c) Premium/SFHA
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(d) Household Income

Figure A.8. Digitalization and The Price of Flood Insurance

This figure shows the dynamic effects of risk maps digitalization on the cost of buying a flood insurance
policy. It plots the coefficient estimates of {βk} in the regression: Yit = αi+λt+

∑
k βk∗1(t = t∗i + k)+ϵit.

In figure (a), Yit measures the average premium per policy in county i in month t. In figure (b), Yit

measures the average premium per policy per $1000 coverage in county i in month t. In figure (c), Yit

measures the average premium per policy divided by the fraction of SFHA in county i in month t. In
figure (d), Yit measures the median household income in county i in year t. All the other variables are
defined as per Figure 3 (or Figure A.4). Standard errors are clustered at the county level. The bands
around the coefficient estimates show the 95% confidence intervals.
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(a) New Portal of the Map Service Center

(b) Legacy Portal of the Map Service Center

Figure A.9. The New FEMA Map Service Center (MSC) Launched in July 2014

This figure shows the FEMA’s new and old portal of its online GIS database. The screenshots were
taken on different dates in July 2014 by the Wayback Machine. The new Map Service Center (MSC)
was officially launched on 28 July, 2014. The last appearance of the old website (in the library of the
Wayback Machine) was on 22 July, 2014.
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Table A.1: Insurance Demand and Risk Maps Digitalization
This table shows results from the two-way fixed effect regression: Yit = αi + λt + β ∗
Digitalizationit + Xit + ϵit. The main explanatory variable Digitalizationit is a binary
variable indicating if county i has published the digitalized maps at time t; this term is
set to zero for the control counties without digitalization. Digitalizationit aggregates the
community-level digitalization process to the county level: treatment is defined as more than
50, 75 or 90 percent of the population in county i obtain access to the digitalized maps in the
same month. All the other variables are defined as per Table 2. Standard errors are clustered
at the county level and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5)

Digitalization 20.89*** 20.87*** 18.63*** 25.25*** 26.28***
(6.78) (6.66) (6.23) (6.61) (7.03)

Premium -0.003 -0.023*
(0.007) (0.012)

Coverage -0.070 -0.024
(0.050) (0.097)

Observations 347,852 347,852 241,271 347,852 347,852
R-squared 0.69 0.69 0.70 0.69 0.69
Include never-treated Y Y N Y Y
Treatment definition >50% >50% >50% >75% >90%
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Table A.2: Various Specifications of Event Windows
This table shows results from the two-way fixed effect regression: Yit = αi+λt+β ∗Digitalizationit+Xit+ϵit. All variables
are defined as per Table 2. In this table, each specification considers a different sample choice, where only observations
within a certain leads and lags around the digitalization date are included. Standard errors are clustered at the county level
and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8)

Digitalization 20.37*** 20.50*** 20.55*** 20.02*** 21.52*** 21.63*** 21.59*** 20.93***
(5.63) (5.53) (5.42) (5.24) (5.73) (5.63) (5.51) (5.30)

Observations 289,251 274,681 259,459 244,035 284,868 270,298 255,076 239,652
R-squared 0.66 0.65 0.64 0.63 0.66 0.65 0.64 0.63

Leads 60 60 60 60 48 48 48 48
Lags 60 48 36 24 60 48 36 24

Digitalization 23.19*** 23.24*** 23.04*** 22.09*** 24.32*** 24.41*** 24.10*** 22.93***
(5.99) (5.87) (5.73) (5.47) (5.90) (5.82) (5.71) (5.49)

Observations 279,583 265,013 249,791 234,367 273,062 258,492 243,270 227,846
R-squared 0.66 0.65 0.64 0.63 0.67 0.66 0.65 0.64

Leads 36 36 36 36 24 24 24 24
Lags 60 48 36 24 60 48 36 24
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Table A.3: Salience and Past Floods
This table repeats the analysis in Table 4 with an extra restriction on the sample selections.
This table shows results from the two-way fixed effect regression: Yit = αi + λt + β ∗
Digitalizationit +Xit + ϵit. All the variables are defined as per Table 4. The subsamples
of counties are constructed such that: (1) they have not had any flood in the previous n
years prior to the publication of the digitalized maps; (2) they have low inherent flood risk,
which is defined as having a below-median value of HighRisk. HighRisk is defined as per
Table 3. Standard errors are clustered at the county level and presented in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

low-risk counties & no flood in the past n years

Digitalization 31.91*** 40.31** 35.24** 40.41** 49.53* 66.49*
(12.21) (15.80) (16.35) (20.23) (25.96) (34.14)

Observations 66,359 49,761 37,265 26,884 17,745 11,598
R-squared 0.70 0.69 0.70 0.70 0.69 0.69
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Table A.4: Insurance Purchases in SFHA and Non-SFHA
This table shows results from the two-way fixed effect regression: Yit = αi + λt + β ∗ Digitalizationit + ϵit. The
dependent variable Yit differs in columns 1 through 4. The first specification examines the number of policies in-force
held by SFHA households, with the value of January 2010 normalized to 100. The second specification examines the
number of policies in-force held by non-SFHA households, with the value of January 2010 normalized to 100. The
third specification takes the difference between the two. The fourth specification examines the fraction of policies
held by SFHA households relative to the total policies in-force. All the other variables are defined as per Table 2.
Standard errors are clustered at the county level and presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4)

Digitalization 7.96** 53.02*** -43.64** -0.047***
(3.34) (20.11) (20.46) (0.005)

Constant 106.70*** 112.85*** -5.17 0.55***
(1.27) (7.66) (7.83) (0.002)

Dependent Variable SFHA Policies Non-SFHA Policies SFHA − Non-SFHA SFHA/Total
Observations 329,114 339,042 320,484 347,672
R-squared 0.75 0.65 0.65 0.86
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Table A.5: Upgrade of Map Service Center and Insurance Purchase
This table shows results from the difference-in-differences regression: Yit = β0+β1∗Treatedi×Postt+
β2 ∗ Treatedi + β3 ∗ Postt + ϵit. Treatedi is the treatment dummy indicating whether county i has
digitalized risk maps or not. Postt is a binary variable indicating if t is posterior to July 2014, which
is the launch date of the FEMA’s new online portal of digital maps (called the Map Service Center).
The other variables are defined as per Table 2. β1 is the difference-in-differences estimate of interest. I
run the regression in a sample from July 2011 to July 2017, i.e. three years before and after the launch
of the new portal. Standard errors are clustered at the county level and presented in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6)

Treated× Post 4.52 4.85 6.07 6.14 5.98 6.14
(3.15) (3.16) (4.04) (4.07) (4.61) (4.68)

Observations 216,401 216,401 216,401 216,401 216,401 216,401
R-squared 0.006 0.009 0.011 0.014 0.012 0.015
Covariates N Y N Y N Y
Digitalization Definition >50% >50% >75% >75% >90% >90%
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Table A.6: Past Floods Predicting Maps Digitalization
This table shows results from the regression: Digitalizationit =

∑
k βk ∗

Floodi,t−k + ϵit. Digitalizationit is a binary variable indicating county i digi-
talizes flood risk maps in month t. Floodi,t−k is a binary variable indicating county
i has a flood in time t − k. Standard errors are clustered at the county level and
presented in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5)

Floodt 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Floodt−1 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001)

Floodt−2 -0.000 -0.000
(0.001) (0.001)

Floodt−3 0.000 0.000
(0.001) (0.001)

Floodt−4 0.000
(0.001)

Floodt−5 0.001
(0.001)

Floodt−6 0.000
(0.001)

Constant 0.003*** 0.003*** 0.003*** 0.003*** 0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 359,740 356,611 356,611 350,361 341,014
R-squared 0.00 0.00 0.00 0.00 0.00
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Web Appendix
* Due to size limit, click here to view the full appendix online.

Example 1: City of Raymondville, Willacy County, Texas

Example 2: City of San Perlita, Willacy County, Texas
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https://drive.google.com/file/d/14jtRfoNJT4rmY3VsxgalZRuIAE0JM9M1/view?usp=sharing
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